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Abstract 

This paper studies the determinants of WTI crude oil call option prices with 
a special emphasis on the relationship between implied volatility and money- 
ness. Our first-stage regression estimates a quadratic approximation of implied 
volatility as a function of moneyness, while our second-stage regression investi- 
gates correlations between the estimated parameters and a list of explanatory 
variables. The first-stage regressions show a positive coefficient on the quadratic 
term, suggesting that the market exhibits ‘Implied Volatility Smile’ and hence 
violates the Black-Scholes predictions. The main results of our paper concern 
the determinants of these violations. We find that the curvature of implied 
volatility as a function of moneyness is: (i) positively and significantly corre- 
lated with basis and hedging pressure of the underlying crude oil futures contract 
(ii) positively and significantly correlated with various measures of transaction 
costs on the options market. We explore various explanations for these results. 
The paper also contains a variety of robustness checks, mostly related to the 
assumed functional forms. 
Keywords: Implied volatility, options, crude oil, hedging pressure. 
JEL classification: G1, Q4 
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1. Introduction 

Oil is the most important commodity in the world. The effect of oil prices spills 
over to other industries in the economy, since oil is used as fuel for transporta- 
tion and as an input to plastic production. In the modern era, an increasingly 
large amount of oil-related trading happens in the derivatives market. Despite 
the economic importance of trading in crude oil options, there is very little re- 
search on their pricing. This paper aims to fill that gap. 
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Based on the Black-Scholes model and its assumptions, all options on the same 
underlying asset and with the same time to maturity should have the same 
implied volatility regardless of the strike price. However, in practice implied 
volatility is consistently found to change with the degree of moneyness, often in 
the form of ‘Implied Volatility Smiles’. Since implied volatility is directly linked 
to pricing of options, deviations from constant implied volatility can tell us a lot 
about the determinants of options prices. Previous research has devoted very 
little attention to identifying the underlying drivers of the relationship between 
implied volatility and moneyness. Apart from the study of [1] on Spanish stock 
index options, the determinants of volatility smiles have been left unexplored in 
the literature. 

While the presence of volatility smiles is a well-established stylized fact for some 
options, to our knowledge there is no prior research on volatility smiles in the 
crude oil market. Moreover, the relationship between implied volatility and 
moneyness differs significantly across various markets. In the U.S. equity mar- 
ket, implied volatility was relatively constant across various levels of moneyness 
until the Crash of 1987. Afterwards, however, implied volatility started to show 
a downward sloping pattern. Regarding other markets, currency and commod- 
ity markets typically exhibit a proper volatility smile, as shown in Panel (a) of 
Figure 1. 

 
Figure 1: Different type of relationships between implied volatility and  moneyness 

(a) Smile (b) Reverse skew (Smirk) 
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options prices. We tackle this task by running a a two-stage regression analysis. 
In the first stage, we estimate a second-order Taylor approximation of implied 
volatility as a function of moneyness separately for each date and maturity class 
in the sample. In the second stage, we analyze correlations between the esti- 
mated parameters and several variables that we believe to be important for 
options prices. 

As previous research has not studied volatility smiles for crude oil, we first 
test if volatility smiles are present in this market. While the use of quadratic 
approximation of the functional form may seem restrictive, we show that this 
specification fits the data surprisingly well. Estimating the model for each date 
and maturity class gives an average R2 of 0.957. The average estimated param- 
eters are 0.93 for the constant term, -1.44 for the linear term and 0.78 for the 
quadratic term.  The fact that the last term is positive suggest that the crude  
oil options market tends to exhibit a volatility smile. 

The main empirical result of the paper is that the curvature of implied volatil- 
ity as a function of moneyness is positively and significantly correlated with the 
basis and hedging pressure of the underlying crude oil futures contract. That 
is, the implied volatility curves tend to be flatter when either the basis is low 
or commercial hedgers are net long. This result is new in the literature and not 
present in for example [1]. The result also suggests that the return distribution 
of the underlying has a key role in explaining volatility smiles, which contrasts 
with the net buying pressure explanation of [2] and the transaction cost expla- 
nation discussed in [3], [4] and [1]. 

We believe that the theoretical reason behind our main result is that crude oil 
futures return distribution tends to exhibit fatter tails and more skew during 
times of high basis and high hedging pressure. We demonstrate empirically that 
a high level of either of these variables is associated with a higher kurtosis in the 
historical return distribution. Therefore, our analysis suggests that the shape 
of implied volatility function is inherently affected by the return distribution of 
the underlying. Fatter tails during times of high basis can be attributed to the 
theory of storage [5, 6, 7]. According to this theory, a higher basis is associated 
with lower inventories and a greater likelihood of price spikes. This mechanism 
increases both skewness and kurtosis, and can therefore explain the volatility 
smile. [8] report empirical support for this mechanism and relate it to the con- 
venience yield of the underlying futures contract. 

Another important finding of this paper is that the curvature of implied volatil- 
ity as a function of moneyness is positively correlated with the low-frequency [9] 
high-low spread estimator and negatively correlated with the traded volume of 
options. We regard these two variables as proxies for transaction costs. On the 
contrary, traded volume of the underlying futures contracts, Monday dummy 
or days to maturity do not have much explanatory power for the volatility smile. 
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The paper also includes various types of robustness checks. While the use of 
second-order Taylor approximation provides a good fit for the model, we realize 
that other functional forms may be even better.  The difficulty is to find a  
good parameterization for the model. This would require a functional form 
which is parsimonious enough for estimation and would provide a good fit. We 
have experimented with a Multivariate Fractional Polynomials analysis which 
is an algorithm to find the best model fit (see [10] and [11]).   As a result,       
we concluded that there is no other model specification which would provide a 
superior fit compared to our quadratic approximation for a majority of dates and 
maturity classes. As a consequence, we decided to carry on with the quadratic 
approximation which provides a good fit and has the additional benefit of easier 
interpretation of the estimated correlations. 
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2. Literature review 

As pointed out, the Black-Scholes model implies that all option prices on the 
same underlying asset and with the same time to maturity should have the same 
implied volatility regardless of the strike price. Previous empirical research on 
various markets shows that this prediction is incorrect. 

Researchers have put forth many potential explanations for the empirical vio- 
lation of the Black-Scholes prediction. A popular approach is to relax the as- 
sumption of constant volatility and replace it with a volatility rate that changes 
either deterministically or stochastically. One strand of research uses an implied 
binomial tree framework [12, 13, 14, 15, 16] that can obtain a perfect fit with 
observed options prices. Nevertheless, [4] empirically test this framework and 
show that the inferred parameters are highly unstable over time. 

In an early paper, [17] proposed a constant elasticity of variance model (an 
example of a “local variance model”) that provides an additional degree of free- 
dom and hence improves the model fit. However, [18] conclude that the constant 
elasticity of variance model does not improve over the Black-Scholes model out- 
of-the-sample. 

Stochastic volatility models come in all shapes and sizes. The key point with 
this class of models is that if correlation between innovations to volatility and 
returns from the underlying asset is negative, the implied volatility function 
becomes downward sloping (a volatility skew). A seminal paper regarding 
stochastic volatility models is [19] and subsequently [20] and [21] have pre- 
sented their versions. There is also a literature developing jump diffusion mod- 
els [22, 23, 24, 25, 26, 27]. However, [24] and [28] show empirically that neither 
stochastic volatility models nor random jump models are alone sufficient to ex- 
plain the empirical violations of the Black-Scholes model. 

The explanations discussed thus far all aim to modify the return distribution of 
the underlying asset, but there are other explanations as well. Recently, [2] sug- 
gested that net buying pressure affects options prices and causes the observed 
patterns. That is, under the Black-Scholes assumptions, the supply curve for 
each option series should be a horizontal line, but in practice, there are plausibly 
limits to arbitrage (see [29], [30], [31]). Such limits to arbitrage make the supply 
curve for options upward sloping and additional demand will increase options 
price together with the implied volatility. [2] show empirical evidence for this 
channel for S&P 500 index as well as individual stock options. 

A further explanation for the volatility smile is the existence of transaction 
costs. For example, papers by [3] and [4] imply that transaction costs and low 
liquidity could in fact be plausible causes for volatility smiles. Moreover, [1] find 
empirically that transaction costs, proxied by bid-ask spread, are important de- 
terminants for the volatility smile. However, they use the average bid-ask spread 
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over the day in their analysis and do not control for the fact that transaction 
costs may depend on moneyness. 

Related research in crude oil options is somewhat limited. [32] develop a method 
for estimating the implied probability density function for futures prices from 
American options prices and apply their method to crude oil options. [33] study 
changes in crude oil volatility after the introduction of NYMEX crude oil futures 
and the subsequent introduction of crude oil options and derivatives on other 
energy commodities. [34] use time-series econometrics to analyze the efficiency 
of WTI and Brent crude oil markets. [35] study whether crude oil futures prices 
are useful in forecasting spot price and document some stylized facts about the 
relationship between basis and futures prices. Forecasting of crude oil volatility 
is studied for example in [36] and [37]. [38] assesses factors that potentially 
influence the volatility of crude oil prices. 
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3. Data 

The main data consists of settlement prices of WTI (West Texas Intermediate) 
crude oil call options traded at the New York Merchantile Exchange (NYMEX) 
between May 13, 2008 and May 31, 2016. We restrict attention to contract 
maturities ranging from 1-month to 12-months, as trading in longer maturity 
contracts is more rare which affects price formation. The underlying crude oil 
futures contracts are for delivery at Cushing, OK. The dataset is purchased 
from Commodity Research Bureau3 (CRB). Crude oil options have maturities 
ranging from one month to 12 months. In practice, the contracts correspond 
roughly to how many months are left until maturity, plus around 20 days set 
by the regulations of NYMEX. 

The Black-Scholes implied volatilities are computed separately for each obser- 
vation. For this purpose we use prices of the underlying crude oil futures from 
the CRB. Moreover, computing the implied volatilities requires a proxy for the 
risk-free interest rate. For this purpose we use the market yield on U.S. Trea- 
sury securities at 1-year constant maturity which is quoted on investment basis4. 

Our raw dataset consists of 1 208 866 observations with positive open interest. 
However, we only analyze options with a positive trading volume on a given 
day, as prices may otherwise not be informative of the current market situa- 
tion. Furthermore, there are some observations for which the empirical implied 
volatility equation is not satisfied for any positive value of implied volatility. We 
discard such observations. Overall, we are left with 305 212 observations with 
a positive trading volume and a well-defined measure of implied volatility. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3See http://www.crbtrader.com/  for  details on  how  to  order the data. 
4These data are available at the federal Reserve website (https://www.federalreserve.gov/ 

releases/h15/data.htm). 

http://www.crbtrader.com/
http://www.crbtrader.com/
https://www.federalreserve.gov/releases/h15/data.htm
https://www.federalreserve.gov/releases/h15/data.htm
https://www.federalreserve.gov/releases/h15/data.htm
https://www.federalreserve.gov/releases/h15/data.htm
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3.1. Descriptive statistics 
As a first look at the data, we plot the spot price and the corresponding returns 
in Figure 2. Since the graphs start on 13.05.2008, we observe a sharp decrease 
in price in the beginning of the sample period.  Volatility of returns is higher  
in the beginning and at the end of the sample period.  Mean daily return is 
-0.0005 with a standard deviation of 0.03 for crude oil, partially reflecting the 
downward trend in spot price during the sample period. 

 
Figure 2: WTI crude oil spot price (13.05.2008 -   31.05.2016) 

(a) Price time-series development (b) Distribution 
 
 
 
 
 
 
 
 
 
 
 
 

01jan2008 01jan2010 01jan2012 01jan2014 01jan2016 

 
 

-.1 0 .1 .2 
Logarithmic return of crude oil  price 

mean = -0.0005 std. dev. = 0.03 skew. = 0.33 kurt. = 0.33 N = 2010 
Jarque-Bera test: p-value = 0.00 

 

Subfigure (a) shows  temporal  development  of  WTI  crude  
oil spot price and logarithmic return  between  13.05.2008  
and 31.05.2016. Subfigure (b) shows the distribution of the 
logarithmic returns of crude oil price approximated through a 
histogram and an Epanechnikov kernel density plot. 

 
Figure 3 shows the development of implied volatility over time5. The pattern 
has similarities with the volatility of returns, so that implied volatility is higher 
in the beginning and at the end of the sample. The higher IV in the beginning 
of the sample is likely to be related to the turmoil during the aftermath of the 
2007-2008 crisis. Additional descriptive statistics can be found in Appendix E. 

We consider seven potential determinants of volatility smiles. These include bid- 
ask spread, option trading volume, basis, hedging pressure (HP), future trading 
volume, dummy variable for Mondays and days-to-maturity (DTM). See Table 
1 for a description of the explanatory variables. 

According to one hypothesis, the deviation from the Black-Scholes postulated 
constant relationship between implied volatility and moneyness stems from the 

 
 

5See Appendix A for further details on its calculation. 
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Figure 3: Implied volatility (13.05.2008 -  31.05.2016) 

(a) Month 1 
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Figure shows temporal development of implied volatility between 13.05.2008 and 
31.05.2016 for contracts of different maturities. 

presence of transaction costs. Transaction costs include components such as 
bid-ask spread, opportunity cost and price impact. We utilize the [9] spread es- 
timator, which captures the bid-ask spread and price impact component. Many 
spread estimators have been suggested throughout the literature. The [9] esti- 
mator is utilized in this paper as it is based on low frequency data and therefore 
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Table 1:  List  of  explanatory variables 
 

Variable Description 
 

Spread Mean bid-ask spread for given date and maturity. 

OptionVolume Total trading volume of options for given date and maturity. 

Basis Percentage basis for the underlying crude oil future. 

HP Index of hedging pressure for the underlying crude oil future. 
 

FutureVolume Total trading volume of the underlying future for a given day   and maturity. 

Monday Dummy variable for mondays 

DTM Days to maturity. 

more feasible to implement. See Appendix B for further details. Ex ante, the 
presence of transaction costs is expected to cause an increase in implied volatil- 
ity, i.e. the curvature of the volatility smile should increase with spread. 

The size of the spread is driven by many components. For instance, spreads pro- 
vide compensation for adverse selection to liquidity providers (dealers and limit 
orders). The probability of adverse selection is generally higher on Mondays 
because there has not been sufficient amount of time for the process of price 
discovery to eliminate information asymmetry accrued during the non-trading 
days of the week. In other words, a Monday dummy is expected to have the 
same effect on the curvature of the volatility smile as the spread. 

Option trading volume can be considered as an indicator of liquidity as markets 
with more trading activity are generally more liquid. In contrast to spreads, 
which are measures of illiquidity, option trading volume is expected to have a 
negative effect on the curvature of the volatility smile. 

Basis is the percentage difference between crude oil spot price and futures price, 
(S(t) F (t))/F (t). Even though basis is often defined as an absolute difference, 
we normalize by futures price in order to make the numbers comparable over 
time. The basis is an important variable. If spot price follows a Martingale 
process6 for which E(S(t + T )) = S(t), our definition of basis corresponds to 
expected hold-to-maturity returns from the underlying futures contract. 

The index of hedging pressure aims to capture the relative numbers of com- 
mercial hedgers in the market. This variable is important because commercial 
hedgers are believed to pay a risk premium to speculators in order to fix the 

 
 

6As pointed out by [35] and related literature, historically no-change forecasts have been better 
predictors of crude oil price than most forecasts based on futures price data in a Mean Squared 
Prediction Error (MPSE) sense. 
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price. This should have direct consequences on the distribution of futures re- 
turns. Appendix C provides further details. 

Days-to-maturity (DTM) and futures trading volume are added as control vari- 
ables. See Table 2 for summary statistics for these variables. 

 
Table 2:  Summary statistics 

 
Variable Mean Std.  dev. Skew. Kurt. Min Median Max N 

Spread 0.04 0.06 4.49 40.41 0.00 0.01 1.75 305212 
OptionVolume 300.85 772.63 6.91 92.84 1 38 28788 305212 
Basis -0.02 0.05 -1.88 10.31 -0.42 -0.01 0.16 305212 
HP -0.14 0.06 0.27 2.90 -0.29 -0.14 0.04 305212 

Summary statistics of [9] spread estimator, option trading volume, basis (rela- 
tive difference between spot price and futures price on WTI crude) and hedging 
pressure (ratio of net commercial hedgers to open interest) conditional on trad- 
ing volume beging positive. 
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4. Results 

The aim of this paper is to identify and study potential determinants of the 
volatility smile/skew related to WTI crude oil option contracts. It is important 
to keep in mind that the smile, or potentially a smirk, is not directly a variable - 
it is a functional form. Hence, our econometric approach is implemented through 
two stages. First, we begin by regressing implied volatility (σt) on moneyness 
(F/K). Second, based on the obtained regression model, we regress each of the 
obtained beta-coefficients from the first stage on a set of explanatory variables 
believed to be of importance. Stage 1 and stage 2 of this approach is presented 
in subsection 4.1 and 4.2 respectively. Subsections 4.3 and 4.4 further discusses 
the obtained results. In Subsection 4.6, we present additional robustness testing. 

4.1. Stage 1 
A variety of functional forms could feasibly be utilized to capture the relation- 
ship between implied volatility (σt) and moneyness F . One specification that 
has been used in the extant literature [1] and that appears to fit well with our 
data, is to include both a linear and squared term of moneyness, such that 

 
σt = β0 + β1 

( 
F 
\ 

 

 

 
+ β2 

( 
F 
\2 

 

 

 
+ εt. (1) 

We chose to use the specification in (1) through an extensive experimentation 
with various functional forms. We utilized a Multivariate Fractional Polynomi- 
als approach to compute the optimal functional form, trading off model fit and 
parsimonious number of variables, for each date and maturity in the sample. 
The details of this approach can be found in Appendix D. However, the difficulty 
is that the optimal functional form tends to depend on the date and maturity. 
Therefore, there does not seem to be a particular functional form that would 
provide a superior fit compared to the specification in (1) for a reasonably large 
proportion of the sample. Moreover, the interpretation of the terms in (1) is 
straightforward and it can be treated as a second-order Taylor approximation 
for a more complex functional form. 

To further justify the use of the specification in (1), we plot the relation between 
moneyness and implied volatility for selected dates in Figure 4. We observe that 
once we restrict attention to a particular date and maturity, the second-order 
polynomial captures the functional form surprisingly well. 

We regress implied volatility on moneyness utilizing the functional form spec- 
ified in Equation (1) to our various sub-samples of data. Each sub-sample is 
constructed by pooling observations with the same valuation date and the same 
maturity date conditional on having a positive amount of trades. With these 
restrictions, a total of 12965 sub-samples are constructed. The sub-samples are 
further divided into twelve different categories based on how many months be- 
fore the contracts expires.  The regression results are reported in Table 3.  For 

K K 
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Figure 4: Relationship between implied volatility and  moneyness 

(a) 02.10.2014 (b) 07.07.2014 
 

  
.6 .7 .8 .9 1 

Moneyness (F/K) 
σt = 2.90 + -5.94(F/K) + 3.20(F/K)^2 + u,  R  = 0.95,  N = 54 

.85 .9 .95 1 1.05 
Moneyness (F/K) 

σt = 7.20 + -14.74(F/K) + 7.63(F/K)^2 + u,  R  = 0.93,  N = 46 

 

(c) 07.04.2016 (d) 09.05.2016 
 

  .8 .85 .9 .95 1 
Moneyness (F/K) 

σt = 1.76 + -2.70(F/K) + 1.03(F/K)^2 + u,  R  = 0.98,  N = 21 

.7 .8 .9 1 1.1 
Moneyness (F/K) 

σt = 1.69 + -2.63(F/K) + 1.08(F/K)^2 + u,  R  = 0.99,  N = 33 

 

(e) 08.06.2010 (f) 09.08.2011 
 
 
 
 
 
 
 
 
 
 

.7 .8 .9 1 1.1 
Moneyness (F/K) 

σt = 1.33 + -1.93(F/K) + 0.73(F/K)^2 + u,  R  = 0.93,  N = 36 

 
.8 .85 .9 .95 1 1.05 

Moneyness (F/K) 
σt = 1.94 + -3.75(F/K) + 2.12(F/K)^2 + u,  R  = 0.90,  N = 43 

 

Examples of the relationship between implied volatility and moneyness 
selected randomly. 

instance, there are 906 sub-samples of contracts with one month until expira- 
tion. Based on these 906 sub-samples, the average number of observations per 
sub-sample is 36.49 with a standard deviation of 14.57. Further, we obtain an 
average  estimate  of  1.22 for  the  constant  term  (β̄0),  −1.94 for  the  linear  term 
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(β̄1) and 0.84 for the squared term (β̄2).  The average explanatory power (R̄2) is 
0.95. The distribution, approximated through histograms and (Epanechnikov) 
kernel density plots, of the β-coefficients across each category, are shown in 
Figures  5  -  7.  Across  the  twelve  categories,  the  constant  term  (β̄0)  is  ranging 
from 0.58 to 1.22, where the estimate seems to generally be higher the  closer 
the contract is to maturity. The coefficient of the linear term ranges from 1.94 
to 0.76 and between 0.48 to 0.90 coefficient of the squared term. The number 
of sub-samples and the average number observations in the sub-samples tend 
to decrease as time until expiration increases. Nevertheless, the average R2 is 
quite high in all cases. 

 
Table 3:  Stage  1  regression results 

 
Month β̄0(σβ0 ) β̄1(σβ1 ) β̄2(σβ2 ) R̄2 N̄ (σN ) Sub-samples 

 

1 1.22(10.27) -1.94(20.28) 0.84(10.02) 0.95 36.49(14.57) 906 
 
 
 
 
 
 
 
 

Empirical results from regressing implied volatility (σt) on both a linear and 
squared term of moneyness (F/K): 

 
σt = β0 + β1 

( 
F 
\ 

 

 

 
+ β2 

( 
F 
\2 

 

 

 
+ εt 

 

For sub-samples with the given number of months before maturity, the aver- 
age values of β-coefficients, explanatory power (R2), average number of ob- 
servations (N ) in the sub-samples and number of sub-samples are reported. 
Standard deviations for each statistic are reported in parenthesis. 

K K 

2 1.10(2.60) -1.72(5.17) 0.83(2.58) 0.93 47.07(16.34) 1891 
3 1.05(0.75) -1.68(1.69) 0.88(0.90) 0.92 37.97(16.52) 1852 
4 1.01(0.70) -1.63(1.55) 0.90(0.82) 0.95 24.37(13.33) 1780 
5 0.92(0.63) -1.46(1.40) 0.83(0.74) 0.97 14.38(9.82) 1690 
6 0.83(0.74) -1.29(1.63) 0.75(0.86) 0.98 9.63(6.87) 1454 
7 0.76(0.52) -1.13(1.26) 0.67(0.72) 0.98 8.35(6.41) 1068 
8 0.69(0.47) -1.02(1.09) 0.61(0.59) 0.98 7.47(5.57) 733 
9 0.66(0.36) -0.95(0.86) 0.58(0.48) 0.98 7.57(5.08) 527 

10 0.63(0.35) -0.91(0.84) 0.56(0.46) 0.98 8.00(5.39) 414 
11 0.60(0.53) -0.85(1.13) 0.52(0.59) 0.97 7.44(4.86) 349 
12 0.58(0.33) -0.76(0.76) 0.48(0.41) 0.99 6.77(4.43) 301 
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(a) Month 1 
 
 
 
 
 

-30 -20 -10 0 10 20 
β1-coefficient 

mean = 1.22  std. dev. = 10.27  skew. = -10.21  kurt. = 127.55 
min = -158.06  max = 15.04  N = 906 

 
Figure 5:  Distribution  of β0 

(b) Month 2 
 
 
 
 
 

-10 -5 0 5 
β1-coefficient 

mean = 1.10  std. dev. = 2.60  skew. = -10.57  kurt. = 171.78 
min = -50.75  max = 6.29  N = 1891 

 
 

(c) Month 3 
 
 
 
 
 

-1 0 1 2 3 
β1-coefficient 

mean = 1.05  std. dev. = 0.75  skew. = -0.62  kurt. = 6.99 
min = -3.80  max = 5.76  N = 1852 

 

(d) Month 4 
 
 
 
 
 

-1 0 1 2 3 
β1-coefficient 

mean = 1.01  std. dev. = 0.70  skew. = 9.30  kurt. = 239.04 
min = -3.24  max = 18.79  N = 1780 

(e) Month 5 
 
 
 
 
 

-1 0 1 2 3 
β1-coefficient 

mean = 0.92  std. dev. = 0.63  skew. = -1.73  kurt. = 112.50 
min = -10.69  max = 10.67  N = 1690 

(f) Month 6 
 
 
 
 
 

-1 0 1 2 3 
β1-coefficient 

mean = 0.83  std. dev. = 0.74  skew. = 2.81  kurt. = 96.37 
min = -8.95  max = 12.70  N = 1454 

 

(g) Month 7 
 
 
 
 
 

-1 0 1 2 
β1-coefficient 

mean = 0.76  std. dev. = 0.52  skew. = -2.92  kurt. = 49.09 
min = -6.53  max = 4.07  N = 1068 

(h) Month 8 
 
 
 
 
 

-.5 0 .5 1 1.5 2 
β1-coefficient 

mean = 0.69  std. dev. = 0.47  skew. = 0.48  kurt. = 24.26 
min = -2.93  max = 4.78  N = 733 

(i) Month 9 
 
 
 
 
 

0 .5 1 1.5 2 
β1-coefficient 

mean = 0.66  std. dev. = 0.36  skew. = 0.10  kurt. = 13.70 
min = -1.64  max = 3.01  N = 527 

 

(j) Month 10 
 
 
 
 
 

-.5 0 .5 1 1.5 
β1-coefficient 

mean = 0.63  std. dev. = 0.35  skew. = 1.08  kurt. = 10.03 
min = -0.76  max = 2.93  N = 414 

(k) Month 11 
 
 
 
 
 

-.5 0 .5 1 1.5 2 
β1-coefficient 

mean = 0.60  std. dev. = 0.53  skew. = 1.40  kurt. = 29.60 
min = -2.07  max = 5.39  N = 349 

(l) Month 12 
 
 
 
 
 

-.5 0 .5 1 1.5 
β1-coefficient 

mean = 0.58  std. dev. = 0.33  skew. = 2.55  kurt. = 19.65 
min = -0.21  max = 2.88  N = 301 

 

Distribution, proxied by a histogram and an Epanechnikov kernel density plot, of 
the constant term (β0) from regressing implied volatility (σt) on both a linear and 
squared term of moneyness (F/K). Month indicates the approximate time to matu- 
rity. 
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(a) Month 1 
 
 
 
 
 

-20 -10 0 10 20 
β1-coefficient 

mean = -1.94  std. dev. = 20.28  skew. = 10.03  kurt. = 125.50 
min = -30.96  max = 314.49  N = 906 

Figure 6:  Distribution  of β1 

(b) Month 2 
 
 
 
 
 

-6 -4 -2 0 2 4 
β1-coefficient 

mean = -1.72  std. dev. = 5.17  skew. = 9.16  kurt. = 139.98 
min = -13.02  max = 96.06  N = 1891 

 
 

(c) Month 3 
 
 
 
 
 

-3 -2 -1 0 
β1-coefficient 

mean = -1.68  std. dev. = 1.69  skew. = 0.28  kurt. = 5.04 
min = -11.22  max = 7.57  N = 1852 

 

(d) Month 4 
 
 
 
 
 

-3 -2 -1 0 
β1-coefficient 

mean = -1.63  std. dev. = 1.55  skew. = -6.83  kurt. = 156.91 
min = -37.10  max = 7.22  N = 1780 

(e) Month 5 
 
 
 
 
 

-3 -2 -1 0 
β1-coefficient 

mean = -1.46  std. dev. = 1.40  skew. = 1.17  kurt. = 70.72 
min = -20.76  max = 21.81  N = 1690 

(f) Month 6 
 
 
 
 
 

-3 -2 -1 0 1 
β1-coefficient 

mean = -1.29  std. dev. = 1.63  skew. = -2.01  kurt. = 70.34 
min = -24.96  max = 18.79  N = 1454 

 

(g) Month 7 
 
 
 
 
 

-2.5 -2 -1.5 -1 -.5 0 
β1-coefficient 

mean = -1.13  std. dev. = 1.26  skew. = 3.09  kurt. = 52.78 
min = -8.56  max = 17.17  N = 1068 

(h) Month 8 
 
 
 
 
 

-2 -1.5 -1 -.5 0 
β1-coefficient 

mean = -1.02  std. dev. = 1.09  skew. = -0.33  kurt. = 14.40 
min = -8.81  max = 6.24  N = 733 

(i) Month 9 
 
 
 
 
 

-2 -1.5 -1 -.5 0 
β1-coefficient 

mean = -0.95  std. dev. = 0.86  skew. = -0.37  kurt. = 9.18 
min = -6.35  max = 3.44  N = 527 

 

(j) Month 10 
 
 
 
 
 

-2 -1.5 -1 -.5 0 
β1-coefficient 

mean = -0.91  std. dev. = 0.84  skew. = -0.86  kurt. = 6.76 
min = -5.46  max = 2.43  N = 414 

(k) Month 11 
 
 
 
 
 

-2 -1.5 -1 -.5 0 .5 
β1-coefficient 

mean = -0.85  std. dev. = 1.13  skew. = -1.38  kurt. = 23.91 
min = -10.64  max = 4.45  N = 349 

(l) Month 12 
 
 
 

         
-1.5 -1 -.5 0 

β1-coefficient 
mean = -0.76  std. dev. = 0.76  skew. = -1.78  kurt. = 11.26 
min = -5.17  max = 0.84  N = 301 

 

Distribution, proxied by a histogram and an Epanechnikov kernel density plot, of the 
linear term (β1) from regressing implied volatility (σt) on both a linear and squared 
term of moneyness (F/K). Month indicates the approximate time to maturity. 
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(a) Month 1 
 
 
 
 
 

-10 -5 0 5 10 
β1-coefficient 

mean = 0.84  std. dev. = 10.02  skew. = -9.84  kurt. = 123.29 
min = -156.37  max = 16.01  N = 906 

Figure 7:  Distribution  of β2 

(b) Month 2 
 
 
 
 
 

-2 0 2 4 
β1-coefficient 

mean = 0.83  std. dev. = 2.58  skew. = -7.95  kurt. = 114.04 
min = -45.32  max = 6.85  N = 1891 

 
 

(c) Month 3 
 
 
 
 
 

0 .5 1 1.5 2 
β1-coefficient 

mean = 0.88  std. dev. = 0.90  skew. = -0.19  kurt. = 4.52 
min = -3.57  max = 5.68  N = 1852 

 

(d) Month 4 
 
 
 
 
 

0 .5 1 1.5 2 
β1-coefficient 

mean = 0.90  std. dev. = 0.82  skew. = 5.79  kurt. = 125.55 
min = -3.54  max = 18.55  N = 1780 

(e) Month 5 
 
 
 
 
 

0 .5 1 1.5 
β1-coefficient 

mean = 0.83  std. dev. = 0.74  skew. = -0.92  kurt. = 54.96 
min = -10.68  max = 10.39  N = 1690 

(f) Month 6 
 
 
 
 
 

0 .5 1 1.5 
β1-coefficient 

mean = 0.75  std. dev. = 0.86  skew. = 1.55  kurt. = 60.10 
min = -9.48  max = 12.55  N = 1454 

 

(g) Month 7 
 
 
 
 
 

0 .5 1 1.5 
β1-coefficient 

mean = 0.67  std. dev. = 0.72  skew. = -4.11  kurt. = 71.64 
min = -10.79  max = 4.67  N = 1068 

(h) Month 8 
 
 
 
 
 

0 .5 1 1.5 
β1-coefficient 

mean = 0.61  std. dev. = 0.59  skew. = 0.22  kurt. = 11.93 
min = -3.05  max = 4.48  N = 733 

(i) Month 9 
 
 
 
 
 

0 .2 .4 .6 .8 1 
β1-coefficient 

mean = 0.58  std. dev. = 0.48  skew. = 0.39  kurt. = 8.78 
min = -1.97  max = 3.56  N = 527 

 

(j) Month 10 
 
 
 
 
 

0 .2 .4 .6 .8 1 
β1-coefficient 

mean = 0.56  std. dev. = 0.46  skew. = 0.81  kurt. = 5.99 
min = -1.20  max = 2.80  N = 414 

(k) Month 11 
 
 
 
 
 

0 .5 1 
β1-coefficient 

mean = 0.52  std. dev. = 0.59  skew. = 1.31  kurt. = 21.06 
min = -2.15  max = 5.46  N = 349 

(l) Month 12 
 
 
 
 
 

0 .2 .4 .6 .8 1 
β1-coefficient 

mean = 0.48  std. dev. = 0.41  skew. = 1.42  kurt. = 8.47 
min = -0.33  max = 2.69  N = 301 

 

Distribution, proxied by a histogram and an Epanechnikov kernel density plot, of the 
squared term (β2) from regressing implied volatility (σt) on both a linear and squared 
term of moneyness (F/K). Month indicates the approximate time to maturity. 
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4.2. Stage 2 
To identify potential determinants of the volatility smile, we regress each of 
the estimated coefficients obtained from implementing Equation 1 on a set of 
proposed explanatory variables, see Equation 2. 

 
 

N 

βit  = δ0  + δj xjt + υit where i 0, 1, 2 (2) 
j=1 

Our list of explanatory variables is in Table 1. Regression results from imple- 
menting Equation 2 are provided in Table 4 - 6. 
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K K t 
denotes significance levels of 10, 5 and 1%. 

 
 
 
 

Table 4:  Stage-2  regression  results (β0) 

(a) Months 1 - 6: 
 

Variable 

 
1-month 

Coefficient       p-value      Co 

 
2- month 

efficient      p-value      Co 

 
3- month 

efficient      p-value      Co 

 
4-month 

efficient      p-value      Co 

 
5- month 

efficient      p-value      Co 

 
6-month 

efficient      p-
value 

Constant 7.04 (3.05E-01) 0.61 (4.47E-01) 0.80∗∗∗ (2.02E-04) 0.35 (1.44E-01) 0.96∗∗∗ (1.39E-04) 0.78∗ (5.25E-02) 
Spread -26.55∗∗∗ (6.25E-20) 0.07 (9.34E-01) 0.55 (1.35E-01) 2.05∗∗∗ (2.76E-04) 1.18∗∗ (3.44E-02) 1.47 (1.07E-01) 
Option Volume 5.47∗∗∗ (9.50E-32) 1.04∗∗∗ (8.78E-72) 0.15∗∗∗ (6.91E-24) 0.02 (1.51E-01) 0.01 (1.76E-01) 0.01 (5.66E-01) 
Basis -2.22 (8.97E-01) 11.47∗∗∗ (6.80E-10) 4.06∗∗∗ (1.97E-23) 3.14∗∗∗ (8.24E-18) 1.80∗∗∗ (8.24E-10) 1.02∗∗∗ (6.35E-03) 
HP -2.32 (6.41E-01) 3.71∗∗∗ (2.57E-05) 3.86∗∗∗ (2.08E-48) 2.52∗∗∗ (6.21E-19) 3.04∗∗∗ (5.91E-32) 2.84∗∗∗ (2.14E-15) 
Future Volume -2.59∗∗∗ (5.40E-03) -0.78∗∗∗ (3.31E-09) -0.18∗∗∗ (8.40E-10) 0.00 (8.68E-01) -0.01 (6.50E-01) 0.03 (2.81E-01) 
Monday dummy 0.85 (2.75E-01) -0.11 (4.48E-01) -0.01 (7.68E-01) -0.04 (3.17E-01) 0.02 (5.63E-01) 0.04 (4.47E-01) 
DTM -0.17∗∗ (2.87E-02) 0.01∗ (8.99E-02) 0.00 (1.67E-01) 0.00∗ (5.98E-02) 0.00 (1.27E-01) 0.00 (3.57E-01) 

Obs 906  1891  1852  1780  1690  1454  R-squared 0.21  0.22  0.32  0.19  0.22  0.11   

(b) Months 7 -  12: 
 

Variable 

 
7- month 

Coefficient       p-value      Co 

 
8- mont

h 
efficient      p-value      Co 

 
9-month 

efficient      p-value      Co 

 
10- month 

efficient      p-value      Co 

 
11- month 

efficient      p-value      Co 

 
12- month 

efficient      p-
value 

Constant 1.33∗∗∗ (4.57E-04) 0.81∗ (7.70E-02) 1.18∗∗∗ (9.87E-03) 0.52 (3.35E-01) 0.18 (8.64E-01) 1.79∗∗ (2.62E-02) 
Spread 1.44∗ (6.27E-02) 1.29 (1.21E-01) 1.68∗∗ (3.71E-02) 0.75 (3.19E-01) 2.47 (3.27E-01) 1.94 (1.40E-01) 
Option Volume 0.00 (7.79E-01) -0.01 (3.54E-01) 0.01 (3.48E-01) -0.02∗∗ (1.09E-02) 0.00 (9.45E-01) -0.04∗∗∗ (3.37E-03) 
Basis 1.26∗∗∗ (1.23E-05) 1.14∗∗∗ (1.10E-04) 0.40 (1.19E-01) 0.25 (2.70E-01) 0.64∗ (9.77E-02) 0.34 (2.12E-01) 
HP 1.62∗∗∗ (7.62E-08) 1.61∗∗∗ (3.80E-07) 1.71∗∗∗ (4.89E-09) 2.28∗∗∗ (3.58E-14) 1.21∗∗ (3.51E-02) 0.48 (1.98E-01) 
Future Volume 0.03 (1.38E-01) -0.02 (2.82E-01) 0.00 (9.79E-01) -0.04∗ (7.21E-02) 0.07∗ (9.01E-02) -0.02 (3.86E-01) 
Monday dummy 0.00 (9.95E-01) -0.05 (2.44E-01) 0.02 (5.87E-01) -0.02 (6.02E-01) 0.07 (3.65E-01) 0.02 (6.45E-01) 
DTM 0.00∗∗ (3.20E-02) 0.00 (5.65E-01) 0.00 (1.00E-01) 0.00 (7.76E-01) 0.00 (8.31E-01) 0.00 (1.12E-01) 

Obs 1068  733  527  414  349  301  R-squared 0.13  0.14  0.15  0.26  0.07  0.08  
Empirical results from regressing implied volatility β-coefficients on [9] 
spread estimator, option volume, basis, hedging pressure (HP), futures vol- 
ume, Monday-dummy and DTM: 

βit = δ0 + δ1Spread + δ2OptionV olume + δ3Basis + δ4HP + 
δ5FutureV olume + δ6M onday + δ7DT M + εit 

where i ∈ {0, 1, 2} 

The dependent variable, β0, is obtained from the following regression σt = 
β0 + β1 

( F ) + β2 
( F )2 + ε .  One (*), two (**) and three (***) asterisks 
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K K t 
denotes significance levels of 10, 5 and 1%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5:  Stage-2  regression  results (β1) 

(a) Months 1 - 6: 
 

Variable 

 
1-month 

Coefficient       p-value      Co 

 
2- month 

efficient       p-value      Co 

 
3- month 

efficient       p-value      Co 

 
4- month 

efficient       p-value      Co 

 
5- month 

efficient       p-value      Co 

 
6- month 

efficient      p-value 
 

 

Constant -13.55     (3.17E-01) -1.00     (5.26E-01) -0.81∗      (7.52E-02) 0.05     (9.14E-01) -1.30∗∗     (1.27E-02) -0.94     (2.68E-01) 
Spread 52.70∗∗∗     (4.06E-20) -0.43     (7.92E-01) -1.24     (1.06E-01) -4.53∗∗∗     (1.04E-04) -3.15∗∗∗     (6.22E-03) -4.16∗∗     (2.85E-02) 
Option Volume -10.62∗∗∗     (8.08E-31) -2.01∗∗∗     (2.21E-69) -0.30∗∗∗     (7.35E-21) -0.03     (2.81E-01) -0.02     (3.15E-01) -0.01     (7.11E-01) 
Basis -9.82      (7.71E-01) -29.27∗∗∗       (1.17E-15) -12.41∗∗∗       (2.20E-46) -9.61∗∗∗       (2.33E-36) -6.38∗∗∗       (2.59E-25) -4.44∗∗∗       (1.43E-08) 
HP  1.91     (8.46E-01) -9.69∗∗∗     (2.11E-08) -9.16∗∗∗     (2.89E-60) -6.41∗∗∗     (1.47E-27) -7.59∗∗∗     (5.21E-45) -7.11∗∗∗     (2.74E-21) 
Future Volume 5.16∗∗∗      (5.05E-03) 1.62∗∗∗      (4.50E-10) 0.35∗∗∗      (3.51E-08)  -0.02     (6.44E-01)  0.01     (7.95E-01)  -0.09∗     (9.02E-02) 
Monday dummy  -1.64     (2.84E-01)  0.23     (3.98E-01)  0.03     (7.53E-01)  0.08     (3.19E-01)  -0.03     (7.00E-01)   -0.07     (4.75E-01) 
DTM 0.33∗∗     (3.38E-02) -0.02∗      (8.42E-02) -0.01∗      (5.07E-02) -0.01∗∗     (2.68E-02) 0.00     (2.10E-01) 0.00    (4.18E-01) 

Obs 906 1891 1852 1780 1690 1454 
R-squared 0.21 0.24 0.40 0.30 0.34 0.20 

(b) Months 7 -  12: 

Variable 7- month 
Coefficient       p-value      Co 

8- month 
efficient       p-value      Co 

9- month 
efficient       p-value      Co 

10- month 
efficient       p-value      Co 

11- month 
efficient       p-value      Co 

12- month 
efficient      p-value 

 
 

Constant -2.20∗∗     (1.06E-02) -1.06     (2.73E-01) -2.11∗∗     (3.88E-02) -0.11     (9.28E-01) -0.18     (9.35E-01) -3.20∗     (5.90E-02) 
Spread -3.96∗∗       (2.43E-02) -4.24∗∗       (1.54E-02) -4.33∗∗       (1.66E-02) -2.16      (1.89E-01) -6.32      (2.20E-01) -4.96∗       (7.43E-02) 
Option Volume 0.00     (8.61E-01) 0.02     (3.17E-01) -0.01     (4.44E-01) 0.06∗∗∗     (6.06E-03) 0.01     (8.62E-01) 0.09∗∗∗    (5.33E-04) 
Basis -4.64∗∗∗       (1.57E-12) -3.81∗∗∗       (1.13E-09) -2.51∗∗∗       (1.50E-05) -1.66∗∗∗       (8.95E-04) -2.70∗∗∗       (6.88E-04) -2.11∗∗∗       (2.54E-04) 
HP -4.68∗∗∗       (9.12E-12) -5.12∗∗∗       (4.60E-14) -4.54∗∗∗       (5.75E-12) -6.09∗∗∗       (5.68E-20) -3.47∗∗∗       (3.15E-03) -1.87∗∗       (1.89E-02) 
Future Volume -0.08∗      (5.52E-02) 0.04     (4.03E-01) -0.01     (8.88E-01) 0.10∗∗     (4.48E-02) -0.15∗      (8.01E-02) 0.03     (4.16E-01) 
Monday dummy -0.01     (9.35E-01) 0.12     (1.89E-01) -0.03     (6.80E-01) 0.06     (5.18E-01) -0.12     (4.20E-01) -0.06     (5.71E-01) 
DTM 0.01∗∗     (4.67E-02) 0.00     (5.64E-01) 0.01∗      (9.08E-02) 0.00     (9.16E-01) 0.00     (9.32E-01) 0.01     (1.21E-01) 

Obs 1068 733 527 414 349 301 
R-squared 0.23 0.28 0.27 0.40 0.17 0.22 

 
Empirical results from regressing implied volatility β-coefficients on [9] 
spread estimator, option volume, basis, hedging pressure (HP), futures vol- 
ume, Monday-dummy and DTM: 

βit = δ0 + δ1Spread + δ2OptionV olume + δ3Basis + δ4HP + 
δ5FutureV olume + δ6M onday + δ7DT M + εit 

where i ∈ {0, 1, 2} 

The dependent variable, β1, is obtained from the following regression σt = 
β0 + β1 

( F ) + β2 
( F )2 + ε .  One (*), two (**) and three (***) asterisks 
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K K t 
denotes significance levels of 10, 5 and 1%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6:  Stage-2  regression  results (β2) 

(a) Months 1 - 6: 
 

Variable 

 
1-month 

Coefficient       p-value      Co 

 
2- month 

efficient       p-value      Co 

 
3- month 

efficient       p-value      Co 

 
4- month 

efficient       p-value      Co 

 
5- month 

efficient       p-value      Co 

 
6- month 

efficient      p-value 
 

 

Constant 6.42     (3.37E-01) 0.60     (4.41E-01) 0.33     (1.63E-01) -0.05     (8.56E-01) 0.70∗∗∗     (9.71E-03) 0.57     (1.99E-01) 
Spread -26.14∗∗∗      (2.98E-20)   0.34     (6.68E-01)  0.62     (1.27E-01) 2.35∗∗∗     (9.62E-05) 1.71∗∗∗     (4.23E-03)  2.31∗∗     (2.04E-02) 
Option Vol  5.16∗∗∗      (6.27E-30)  0.96∗∗∗      (3.29E-66) 0.15∗∗∗      (1.98E-19)  0.01     (3.66E-01)  0.01     (3.78E-01)   0.00     (7.01E-01) 
Basis   12.51     (4.52E-01) 17.34∗∗∗     (9.33E-22) 7.47∗∗∗     (2.76E-59) 5.62∗∗∗     (1.43E-45) 3.83∗∗∗     (3.99E-33) 2.70∗∗∗    (5.05E-11) 
HP   -0.02     (9.97E-01)  5.37∗∗∗      (3.28E-10) 4.67∗∗∗      (6.26E-57) 3.25∗∗∗     (1.35E-26) 3.89∗∗∗     (3.81E-44) 3.68∗∗∗    (8.80E-21) 
Future Volume  -2.58∗∗∗     (4.62E-03) -0.85∗∗∗     (3.22E-11) -0.18∗∗∗     (2.55E-08)  0.02     (5.42E-01)  0.00     (9.05E-01)  0.06∗∗     (3.37E-02) 
Monday dummy    0.80     (2.90E-01)   -0.12     (3.56E-01)                 -0.01     (7.64E-01)                 -0.04     (3.33E-01)                  0.01     (7.62E-01)                  0.04      (4.55E-01) 
DTM -0.15∗∗     (4.87E-02) 0.01∗∗     (3.94E-02) 0.01∗∗∗     (5.47E-03) 0.00∗∗∗     (9.28E-03) 0.00     (3.09E-01) 0.00    (4.00E-01) 

Obs 906 1891 1852 1780 1690 1454 
R-squared 0.21 0.26 0.42 0.32 0.36 0.21 

(b) Months 7 -  12: 

Variable 7- month 
Coefficient       p-value      Co 

8- month 
efficient       p-value      Co 

9- month 
efficient       p-value      Co 

10- month 
efficient       p-value      Co 

11- month 
efficient       p-value      Co 

12- month 
efficient      p-value 

 
 

Constant 1.27∗∗     (1.03E-02) 0.64     (2.23E-01) 1.31∗∗     (2.09E-02) 0.16     (8.06E-01) 0.20     (8.55E-01) 1.96∗∗     (2.96E-02) 
Spread 2.28∗∗     (2.39E-02) 2.29∗∗     (1.53E-02) 2.44∗∗     (1.47E-02) 1.17     (1.91E-01) 3.53     (1.82E-01) 2.89∗∗     (4.95E-02) 
Option Volume   0.00     (8.05E-01)  -0.01     (3.05E-01)  0.01     (5.10E-01) -0.03∗∗∗     (2.63E-03)   0.00     (8.65E-01) -0.05∗∗∗     (2.64E-04) 
Basis 2.77∗∗∗     (2.07E-13) 2.26∗∗∗     (2.49E-11) 1.53∗∗∗      (2.05E-06) 1.06∗∗∗      (1.05E-04) 1.60∗∗∗     (9.54E-05) 1.30∗∗∗     (2.26E-05) 
HP 2.46∗∗∗     (3.89E-10) 2.73∗∗∗     (8.48E-14) 2.33∗∗∗      (1.46E-10) 3.23∗∗∗      (3.79E-19) 1.82∗∗∗     (2.61E-03)  1.00∗∗     (1.78E-02) 
Future Volume  0.05∗∗     (4.83E-02)  -0.01     (6.28E-01)  0.01     (7.12E-01)  -0.05∗      (5.83E-02)  0.09∗      (5.54E-02)   -0.02     (4.89E-01) 
Monday dummy 0.01     (8.42E-01) -0.06     (2.09E-01) 0.02     (6.62E-01) -0.03     (5.91E-01) 0.06     (4.28E-01) 0.03     (5.35E-01) 
DTM 0.00∗      (5.71E-02) 0.00     (5.61E-01) 0.00∗      (7.14E-02) 0.00     (9.43E-01) 0.00     (9.50E-01) 0.00∗     (7.98E-02) 

Obs 1068 733 527 414 349 301 
R-squared 0.22 0.29 0.27 0.41 0.19 0.26 

 
Empirical results from regressing implied volatility β-coefficients on [9] 
spread estimator, option volume, basis, hedging pressure (HP), futures vol- 
ume, Monday-dummy and DTM: 

βit = δ0 + δ1Spread + δ2OptionV olume + δ3Basis + δ4HP + 
δ5FutureV olume + δ6M onday + δ7DT M + εit 

where i ∈ {0, 1, 2} 

The dependent variable, β2, is obtained from the following regression σt = 
β0 + β1 

( F ) + β2 
( F )2 + ε .  One (*), two (**) and three (***) asterisks 
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4.3. Interpretation of Stage-2 Regression   Results 
Interpretation of Stage-2 regression results is subject to two complexities. First, 
we are dealing with functional forms rather than individual observations. Sec- 
ond, the options contracts vary by maturity and there is no theoretical reason 
to believe that all maturities behave similarly. To address these complexities in 
more detail, we start with a couple of remarks. 

Functional Form. We approximate the implied volatility function with a second- 
order polynomial. The approximation satisfies the following two rules: 

Given β1 and β2, an increase in β0 shifts the whole implied volatility 
function upwards. 

Given β0 and β1, an increase in β2 increases the curvature of the implied 
volatility function. If β2 > 0 the function open upwards, otherwise it 
opens downwards. 

These two rules suggests that for our purposes, determinants of β0 and β2 are 
the most interesting. Changes in β1  primarily shift the curve sideways7. 

Maturity of Option Contracts. We report the results separately for all matu-  
rities between 1-month and 12-months. The only data restriction is that we 
require a positive volume of trade for at least three levels of moneyness each 
day in order for an observation to be included. By investigating the results, we 
observe that the 1-month and 2-month contracts behave very differently from 
all other contracts. Moreover, the results seem very consistent across the longer 
maturity contracts. Therefore, our principal interest is to investigate results for 
maturities ranging from 3-month to 12-month contracts. We believe that the 
front contracts are mostly used for speculative trading whereas contracts with a 
longer maturity are used for hedging purposes. In fact, the traded volume and 
open interest tend to be much higher for the front contracts, as shown in Figure 
8. 

We now proceed with interpreting the results. It should be emphasized that 
statistical significance is subject to some caveats here. For one, the dependent 
variable itself is an estimate from the first-stage regression and therefore the 
usual OLS (Ordinary Least Squares) standard errors are not directly applica- 
ble.   Secondly,  recent research has shown that even the usual OLS    standard 

 
 
 

7To be more specific, a second-order equation is a parabola whose turning point in (x, y)-plane 
is given by 

( 
−
2 

β1 , β0  −    1     .  Therefore, an increase in β   shifts the curve both vertically and 
2 

4 1 

horizontally. However, empirically our curves tend to have a turning point around moneyness 
level of one.  Constraining  −2 

β1  = 1 implies that there is a direct relationship between β1  and 
β2. Therefore, we believe that the precise value of β1 does not offer many insights for our 
analysis and we choose to concentrate on analyzing the distribution of  β2. 

• 

• 

β2 
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Figure 8: Open interest and volume for various contract   maturities 
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errors may be misleading in large samples8. However, despite these challenges 
we believe that the standard errors convey relevant information about the un- 
derlying correlation. We have added p-values to Tables 4-6 in case the reader 
wants to assess the results in more detail. 

Table 4 shows that the coefficients for bid-ask spread are consistently positive 
for all maturities starting from 3 months. The coefficients on option volume are 
first positive but turn soon negative. Hence, higher transaction costs tend to be 
associated with a higher level of implied volatility. 

The coefficients on basis and hedging pressure are consistently positive and sta- 
tistically significant for maturities starting from 4 months. Therefore, a high 
basis or a net short position commercial hedgers is associated with a higher 
average level of implied volatility. The last three explanatory variables in Table 
4 seem to be less correlated with implied volatility. 

Table 6 contains the main results of this paper. We note that for most  maturi- 
 
 
 

8In particular, [39] argues that there is a need for a careful appraisal of the results from 
statistical models and that the sample size should be explicitly considered when assessing the 
relevance of estimated parameters. [40] shows that when assessing the statistical significance 
of parameter estimates in regression equations, relying on ‘conventional’ significance levels 
(e.g.  5%) implies to be wrong 30% of the time.  As a response to this, [41] proposes that   one 
should consider the sample size in each regression by setting a reference p-value of min  1 , 1% 
where T is the sample size, and work out reference t-statistics in line with this. We thank an 
anonymous referee for pointing out this issue. 

Av
er

ag
e 

op
en

 in
te

re
st

 
15

00
 

20
00

 
25

00
 

30
00

 

0 
50

 
10

0 
15

0 
20

0 
25

0 
Av

er
ag

e 
to

ta
l t

ra
di

ng
 v

ol
um

e 
of

 fu
tu

re
 c

on
tra

ct
 



24  

 
 
 
 

ties starting from 4 months, either bid-ask spread is positive or option volume 
is negative and statistically significant. Hence high transaction costs are as- 
sociated with a higher degree of curvature in the implied volatility function. 
However, even more consistent and statistically significant pattern is observed 
with basis and hedging pressure. All maturities starting from 3 months are pos- 
itive and numerically consistent with each other. Therefore, implied volatility 
function tends to smile more during times of a high basis or a net short position 
of commercial hedgers in the underlying futures contract. On the other hand, 
the last three variables in Table 6 do not show a very consistent pattern. 
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4.4. Empirical Kurtosis of the Underlying Futures    Returns 
The results in the previous section indicate that basis and hedging pressure are 
important determinants of volatility smiles. This is in contrast with [1] who 
estimate that transaction costs are the main culprits for volatility smiles. Fur- 
thermore, as discussed in the literature review, the Black-Scholes model has been 
extended in various ways to modify the return distribution of the underlying 
asset so that the predictions would be more in line with empirical observations. 

Since the importance and role of the return distribution of the underlying asset 
seems to be controversial in the literature, we look further into the empirical re- 
turn distribution in the hope of shedding more light on this important question. 
Since basis and hedging pressure seem to be of importance for crude oil options, 
we construct two categories based on the values of each of these variables. The 
first category includes observations below the 25th percentile and the second 
category is for observations above the 75th percentile. We plot the empirical 
return distributions for these categories. 

Figure 9 shows the distribution for the basis categories for all maturity classes. 
The category with a higher basis has a lower standard deviation of returns for 
each maturity class. However, the main interest here is the fourth moment of 
the return distribution. In the Black-Scholes model the return distribution is 
log-Normal for which kurtosis equals three. As can be seen in Figure 10, the em- 
pirical kurtosis consistently exceeds 3. Even more importantly, kurtosis is much 
higher for high levels of basis which correspond to a bigger volatility smile, as 
concluded in the previous section. 

Figure 10 shows similar graphs using hedging pressure in forming the two cat- 
egories. High hedging pressure correspond to a higher standard deviation of 
returns. The role of kurtosis is less obvious compared to Figure 10. For most 
maturity classes, especially for the short ones, kurtosis seems to be higher for 
the category with a lower hedging pressure. However, this is reversed for some 
contracts with a longer maturity. 

Overall, since basis is the most convincing determinant of volatility smiles and 
its effect on the kurtosis of the underlying return distribution is very clear, we 
believe that we have found a channel which is plausible both in theory and 
practice. 

4.5. Economic Intuition 
Let us discuss the economic reasons why the underlying asset distribution may 
show more kurtosis during times of high basis. This feature follows from the 
theory of storage.  Imagine a world where a representative producer receives  
a “harvest” each period and sells the harvest to the market.   Since demand     
is downward sloping, a larger harvest corresponds to a lower price. Moreover, 
fluctuations in harvest over time cause price fluctuations. Let us further assume 
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Figure 9:  Futures  returns across two  levels of   basis 

(a) Month 1 (b) Month 2 (c) Month 3 
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Logarithmic returns of futures  prices 

Low basis: mean = 0.0003 std. dev. = 0.04 skew. = 0.86 kurt. = 5.94 
High basis: mean = -0.0009 std. dev. = 0.02 skew. = -0.24 kurt. = 6.62 

 
-.1 -.05 0 .05 .1 .15 

Logarithmic returns of futures  prices 
Low basis: mean = -0.0002 std. dev. = 0.03 skew. = 0.15 kurt. = 4.02 
High basis: mean = -0.0002 std. dev. = 0.02 skew. = -0.46 kurt. = 8.28 
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Logarithmic returns of futures  prices 
Low basis: mean = -0.0007 std. dev. = 0.03 skew. = 0.25 kurt. = 4.00 
High basis: mean = 0.0004 std. dev. = 0.02 skew. = -0.17 kurt. = 9.24 

 

(d) Month 4 (e) Month 5 (f) Month 6 
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Low basis: mean = -0.0009 std. dev. = 0.03 skew. = 0.22 kurt. = 3.99 
High basis: mean = 0.0004 std. dev. = 0.01 skew. = -0.22 kurt. = 10.21 
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Low basis: mean = -0.0011 std. dev. = 0.03 skew. = 0.28 kurt. = 4.10 
High basis: mean = 0.0003 std. dev. = 0.01 skew. = 0.11 kurt. = 8.03 
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Low basis: mean = -0.0010 std. dev. = 0.03 skew. = 0.26 kurt. = 4.28 
High basis: mean = 0.0004 std. dev. = 0.01 skew. = 0.17 kurt. = 8.74 

 

(g) Month 7 (h) Month 8 (i) Month 9 
 
 
 
 
 
 

-.1 -.05 0 .05 .1 
Logarithmic returns of futures  prices 

Low basis: mean = -0.0010 std. dev. = 0.03 skew. = 0.26 kurt. = 4.50 
High basis: mean = 0.0005 std. dev. = 0.01 skew. = 0.09 kurt. = 9.47 
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Low basis: mean = -0.0008 std. dev. = 0.03 skew. = 0.25 kurt. = 4.57 
High basis: mean = 0.0005 std. dev. = 0.01 skew. = 0.44 kurt. = 9.13 
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Low basis: mean = -0.0010 std. dev. = 0.03 skew. = 0.26 kurt. = 4.59 
High basis: mean = 0.0003 std. dev. = 0.01 skew. = 0.48 kurt. = 9.90 

 

(j) Month 10 (k) Month 11 (l) Month 12 
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Low basis: mean = -0.0013 std. dev. = 0.03 skew. = 0.23 kurt. = 4.69 
High basis: mean = 0.0002 std. dev. = 0.01 skew. = -0.22 kurt. = 8.37 
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Low basis: mean = -0.0008 std. dev. = 0.03 skew. = 0.25 kurt. = 4.75 
High basis: mean = 0.0001 std. dev. = 0.01 skew. = -0.68 kurt. = 6.64 
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Low basis: mean = -0.0011 std. dev. = 0.02 skew. = 0.14 kurt. = 4.79 
High basis: mean = 0.0000 std. dev. = 0.01 skew. = -0.35 kurt. = 9.02 

 
 

that the price distribution over several periods follows a Normal distribution 
when there is no possibility to store. How does storage affect the long-term 
price distribution? 

To answer this question, let us consider two regimes: (i) a regime with high 
inventory levels and infrequent stockouts (ii) a regime with low inventories and 
frequent stockouts. With high inventory levels, the effect of storage is to decrease 
kurtosis through general equilibrium price effects. Compared to the benchmark 
case of no storage, inventory holders tend to buy when the price is low, thereby 
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Figure 10: Futures  returns across two  levels of    HP 

(a) Month 1 (b) Month 2 (c) Month 3 
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“thinning out” the left end of the price distribution. Moreover, inventory hold- 
ers tend to sell when the price is high, thereby thinning out the right end of the 
price distribution. As a result, kurtosis decreases as the inventory holder affect 
the price through their actions. 

The effect of storage in the second regime is more complex. Inventory holders 
again buy when the price is low and thin out the left end of the distribution. 
However, in the case of a stockout, there is nothing more to sell and the price 
may peak at a very high level. This is the mechanism that creates price  peaks, 
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positive skewness and increased kurtosis according to the theory of storage. 
Compared to the first regime, where both left and right ends of the price distri- 
bution are being thinned out by inventory holders, the non-negativity constraint 
for inventories creates a fat right tail for the price distribution. This has a big 
impact on kurtosis. 

We believe that the theory of storage is relevant for the crude oil market9. To 
study this further, we use data on U.S. crude oil inventories to see how they 
relate to realized returns from holding crude oil futures. Figure 11 shows the 
relationship between crude oil inventory level and daily futures return for various 
maturities. We observe that for shorter maturities, the relationship is positive 
while it quickly turns negative as the maturities become longer. As such, we 
take this as evidence that futures returns of longer maturities are higher when 
inventory levels are lower. We believe that these patterns relate to kurtosis and 
basis as discussed above. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9See [42] for an analysis of the relationship between inventory levels and convenience yield in 
the natural gas market. 
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Figure 11: Relationship between futures return and crude oil inventory    level. 

(a) Month 1 (b) Month 4 
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(c) Month 7 (d) Month 10 
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Scatter plot between logarithmic returns of futures prices and crude oil stock with  
a fitted OLS regression line. The statistical distribution, approximated through a 
histogram and an Epanechnikov kernel density plot, for each variable is also added. 
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4.6. Classification of smile 
One pertinent question relates to the classification of the functional forms. In 
other words, are WTI option contracts predominantly smiling or smirking? 
Based on visual inspection of a subset of the 12965 stage 1 regressions, four 
categories appears to be present: smiles, smirks (reverse skew), forward skew 
and frowns. Based on the fitted functional forms, we classify the relationships 
as follows. Smiles are u-shaped functional forms. By ordering implied volatility 
in an increasing order based on moneyness, if the observation with the lowest 
level of moneyness (σ1) is greater than the observation with the second lowest 
(σ2) and the observation with second highest (σN  1) is lower  than the high-   
est (σN ), then we  are dealing with a smile.  Frowns,  as the name implies,  is  
an upside down smile. Smirks, on the other hand, are monotonically decreasing 
and forward skews are monotonically increasing. See Equation 3 for a summary. 

 

Smile if σ1  > σ2  and σN −1  < σN 

T ype = 
Smirk if σ1  > σ2  and σN −1  > σN  (3) 

Frown if σ1 
Forward skew    if 

< σ2  and σ 
and 

N −1 > σN 

The shape of the functional form is informative of demand for options. For in- 
stance, a high demand for in-the-money and out-of-the-money call options leads 
to smiles. On the other hand, high demand for at-the-money calls results in 
frowns. High demand for in-the-money calls yields reverse skew (smirks), while 
high demand for out-of-the-money calls leads to forward skew. The presence of 
a smile indicates that the distribution of the underlying exhibits leptokurtosis, 
i.e. heavier tails compared to the assumed lognormal distribution of the Black- 
Scholes model. Smirk, on the other hand, implies a distribution of a heavier 
(leptokurtic) left-tail and less heavier (platykurtic) right-tail compared to log- 
normal distribution. Forward skew, as opposed to smirk, is characterized by a 
less heavier left-tail and heavier right-tail. 

Table 7 and figure 12 shows the results from applying these classification heuris- 
tics. For contracts with one month until expiration, 27% are classified as smiles, 
65% as smirks, 6% as frowns and 2% as forward skews. As the maturities be- 
come longer, smiles and forward skews tend to occur more frequently. On the 
contrary, smirks and frowns tend to occur less frequently. This pattern is inter- 
esting, and suggests that volatility smiles and forward skews are more relevant 
from the point of view of long-term investors. 

σ1  < σ2 σN −1 < σN 
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Smile 
Smirk 
ForwardSkew 
Frown 

 
 
 
 
 
 

Table 7: Classification of implied volatility and  moneyness 
 

Month Smile Smirk Frown Forward skew 

1 241 (27%) 592 (65%) 55 (6%) 18 (2%) 
2 879 (46%) 768 (41%) 151 (8%) 93 (5%) 
3 1212 (65%) 404 (22%) 115 (6%) 121 (7%) 
4 1384 (78%) 165 (9%) 46 (3%) 185 (10%) 
5 1260 (75%) 120 (7%) 17 (1%) 293 (17%) 
6 1009 (69%) 94 (6%) 16 (1%) 335 (23%) 
7 657 (62%) 125 (12%) 11 (1%) 275 (26%) 
8 429 (59%) 78 (11%) 9 (1%) 217 (30%) 
9 316 (60%) 37 (7%) 1 (0%) 172 (33%) 

10 241 (58%) 20 (5%) 1 (0%) 152 (37%) 
11 200 (57%) 12 (3%) 2 (1%) 135 (39%) 
12 152 (50%) 30 (10%) 0 (0%) 119 (40%) 

Sum 7980(62%) 2445(19%) 424(3%) 2115(16%) 

 
 
 
 
 

Figure 12: Proportion of volatility-moneyness relationships 
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Striving towards gaining an understanding for what causes the different smile- 
patterns, we apply multinomial logit regression to the classification reported in 
Table 7 (see Equation (4)). We use the same independent variables as in Stage 
2 of the main regressions. Results from this approach are shown in Table 8. 
The coefficients can be challenging to interpret given the varying scale of the 
independent variables. Nevertheless, an increase in the high-low spread estima- 
tor is associated with an significantly increased probability of observing either 
a smile or smirk compared to the base category. Spread estimator, however, 
does not seem to help predicting forward skew. Option trading volume predicts 
increased probability of smile, but decreased probability of smirk. Basis seems 
to behave in a similar fashion as option trading volume and hedging pressure 
conforms to the spread estimator. Days-to-maturity increases probability of all 
classes compared to the base category, but more so for forward skew. While the 
rigorousness of this approach is not sufficient to claim causality, it does suggest 
that the shape of the relationship between implied volatility and moneyness 
tend to change with characteristics as transaction costs proxied through spread 
estimators and option trading volume. 

 
 

pij  = exp(X t βj ) , j = 1, · · · , m (4) 
m 

 
l=1 

exp(Xt βl 

 

Table  8:  Multinomial  logistic  regression result 
 

Variable Smile Reverse skew Forward skew 

Constant -0.13 -1.55∗ -0.17 
Spread 23.78∗ 22.86∗ -29.47∗∗ 
OptionVolume 0.25∗∗∗ -0.21∗∗∗ 0.01 
Basis 3.69∗∗ -3.05∗ 10.39∗∗∗ 
HP 16.12∗∗∗ 10.08∗∗∗ 1.71 
FutureVolume 0.14 0.05 0.06 
Monday -0.07 0.01 0.01 
DTM 0.014∗∗∗ 0.011∗∗∗ 0.02∗∗∗ 

Reference category: Frown. 

Table 8 suggests that basis and hedging pressure may affect the implied volatil- 
ity function through different channels. A high basis increases the probability of 
forward skews while it decreases the probability of reverse skews. High hedging 
pressure, on the other hand, increases the probability of reverse skews but does 
not significantly affect the probability of forward skews. Altogether, this sug- 
gests that basis could be a more important determinant for the right side of the 
implied volatility function, while hedging pressure could be better at explaining 
the left side. 
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Let us elaborate further on the possibly different implications of basis and hedg- 
ing pressure on volatility smiles. As discussed in section 4.5, the theory of stor- 
age provides a plausible explanation for the relationship between basis, skewness 
and kurtosis. These are likely to affect the right side of the implied volatility 
function. The patterns on the left side, however, may be more easily explained 
by the concept of ‘crashophobia’. 

Crashophobia refers to strong negative skewness in the expected crude oil price 
distribution. In other words, crashophobia happens when the probability of a 
large decrease in oil price exceeds the probability of a large increase. Typically, 
put options are used as hedging instruments to protect against large downward 
movements in oil price. A high demand by investors due to portfolio insurance 
strategies will increase the price of put options which is also reflected to the 
prices of call options through put-call parity. As a result, the left tail of the 
implied volatility distribution shifts up. 
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5. Conclusion 

The main objective of this paper is twofold. First, we attempt to capture the 
relationship between implied volatility and moneyness (here defined as the ratio 
between futures prices and strike price) for WTI crude oil call options traded 
on NYMEX between May 13, 2008 and May 31, 2016. Second, conditional on a 
given functional form describing the relationship, we investigate several poten- 
tial determinants of the β-coefficients. 

We find that a second-order equation is sufficient to adequately capture the 
relationship. More elaborate model fitting with multivariate fractional polyno- 
mials yields a marginally better fit. The increase in explanatory power, however, 
does arguably not justify the decrease in parsimony. Inspection of the predicted 
values of implied volatility reveals that volatility smiles, reverse skew (smirk), 
forward skew and frowns are present to varying degrees depending on the time 
to maturity. 

When regressing the β coefficients of the second-order equation on various can- 
didate explanatory variables, we find a significant correlation between the shape 
of implied volatility functions and basis and hedging pressure. The volatility 
function tends to be flatter when either basis is low or commercial hedgers are 
net long. We believe that the reason for this pattern is that the underlying asset 
distribution exhibits more kurtosis during times of high basis or high hedging 
pressure. 

Secondly, we find that the [9] spread estimator and option trading volume are 
also important determinants of the shape of the implied volatility function. 
Variables such as futures trading volume, days-to-maturity and weekend effect 
proxied through a dummy variable for Mondays appears to not have a signifi- 
cant effect. 
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Appendix A.  Implied volatility 

Implied volatilities are computed from data using the [43] commodity option 
pricing formula for call options given by 

c = e−rT (F0N (d1) − KN (d2)) (A.1) 

where N refers to the c.d.f . of a standard Normal distribution  and 

ln 
( F0 

) 
+ σ

2 
T 

 

  
 

  

d2  = d1 − σ
√

T (A.3) 

In the three equations above, c is the price of the call option, F0 is the futures 
price at the time of purchase, K is the exercise price, r is the risk-free interest 
rate, T is time to maturity and σ is the implied   volatility. 

 
Appendix B.  Bid-Ask Spread 

A potential explanation for implied volatility smiles is the existence of transac- 
tion costs in the options market. Since our dataset does not include quote data, 
we utilize the low-frequency estimate developed by [9]. The advantage of this 
estimate is the fact that it utilizes a wider information set consisting of daily 
close, high and low prices. In particular, [9] define the mid-range as the average 
of daily high and low log-prices: 

 
ηt = lt + ht 

2 
If ct refers to daily closing price, the estimate for bid-ask spread s is given by 

s = 2    E ((ct − ηt)(ct − ηt+1)) (B.1) 

As explained by [9], some observations for s2 may be negative. We replace those 
observations by s = 0. 

 
Appendix C.  Index of Hedging Pressure 

We construct the index of hedging pressure as follows: 
Net Short Commercial Hedgers 

HP = 
Open Interest 

(C.1)
 

Investors in the futures market are categorized into reportable and non-reportable 
depending on the size of their holdings. Reportable investors are further divided 
into ‘Commercial Hedgers’ and ‘Speculators’. We use data on mean weekly 
amount of commercial hedgers divided by daily open interest to construct the 
index in equation C.1. 

T σ 
T σ d1 = (A.2) 
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Appendix D. Multivariate Fractional Polynomials 

Throughout the paper,  we  have  modeled the implied volatility function as   a 
second order equation, i.e. σ = β + β 

( F ) + β 
( F )2 + ε . While this func- 

tional form have been found to be provide the best fit of the data in the extant 
literature [1], we apply more rigorous model specification procedure to ensure 
ensure robustness of our results. Specifically, we utilize multivariate fractional 
polynomials to model the relationship between implied volatility (σt) and mon- 
eyness for a given time to maturity. See [10] and [11]. The volatility smile is 
modeled as: 

 
σt = β0 + 

 
 

βm 
m=1 

( 
F 
\pm 

 

 

 
, (D.1) 

where moneyness is defined as the ratio between futures price and strike price 
K    and p       2,    1,    0.5, 0, 0.5, 1, 2, 3) .  When p is zero, moneyness0        

is taken as ln (moneyness). A total of 44 model specifications are considered - 
8 models with one term 

(8) and 36 models with two terms 
((8) + 

(8)). In the 

  
whe 

 
σt = β0 + β1 

1 

( 
F 
\p 

 

 

 

+ β2 

2 

( 
F 
\p 

 

 

 
· ln 

( 
F 
\ 

 

 

s estimated 
 
. (D.2) 

Model specification is based on a a three-step procedure comprised of an (1) 
inclusion test, (2) a non-linearity test and (3) a simplification test. First, to de- 
termine whether to include the proposed explanatory variable, the best-fitting 
second degree fractional polynomial (FP2) model is compared to a constant 
term only model (null model). Second, given that the independent variable is 
deemed useful, the best-fitting second-degree fractional polynomial is compared 
to the linear model. Third, given that the second degree fractional polynomial 
model is better that the linear model, it is compared to the best single term 
fractional polynomial model. See [44] for further information on the specifica- 
tion procedure. This procedure is depicted in Figure D.13 and the obtained 
results are shown in Table D.9. 

K K K 

as: re p 

K 

M 
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Null model: 
σt = β0 + εt 
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Linear model: 

t 0 1 
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(  ) F p1 
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Figure D.13: Specification procedure 
 

Inclusion test: 
Null model compared to 

linear model 

 

Insignificant 

 Significant 
 

Non-linearity  test: 
Linear model compared to FP2 

 
Insignificant 

 
Significant 

 

Simplification test: 
FP2 compared to FP1 

 
Insignificant 

 
Significant 

 
 
 

I ctional  polynomial  model  specification 
procedure.  Based on three tests,  there are four potential outcomes:  (1) a   
null model with only a constant term, (2) a linear model, (3) a second-degree 
fractional polynomial model with 36 alternative specifications (FP2) and (4) a 
first-degree fractional polynomial model (FP1) with 8 alternative specifications. 
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y on moneyness: 

 
σt = 

 
 

M 
β0 βm 

m=1 

( F )pm .
 

Average values of the β-coefficient and explanatory power (R2) are reported with their asso- 
ciated standard deviation in parenthesis. Specification lists the fractional polynomials powers 
and N denotes how many times the given functional form was selected out of 849 sub-samples. 

Table D.9: Multivariate fractional polynomial regression results 

 Specification β̄0(σβ0 ) β̄1(σβ1 ) β̄2(σβ2 ) R̄2 N 

1 p={1} 0.29(0.09) -0.02(0.24) 0.78 4160 
2 p={3,3} 0.19(0.07) -0.40(0.44) 1.38(1.46) 0.97 2367 
3 p={-2,-2} 0.29(0.09) 1.75(49.68) -1.59(27.15) 0.94 1454 
4 p={2,3} 0.21(0.06) -1.77(0.95) 1.27(0.65) 0.99 652 
5 p={2,2} 0.22(0.06) -0.62(0.35) 1.46(0.68) 0.99 554 
6 p={-2} 0.31(0.15) 0.00(0.98) 0.94 418 
7 p={1,2} 0.24(0.07) -2.33(1.98) 1.27(1.02) 0.99 401 
8 p={1,1} 0.25(0.08) -1.85(1.80) 2.05(1.87) 0.99 290 
9 p={0.5,1} 0.26(0.08) -6.09(4.19) 3.19(2.20) 0.99 243 
10 p={-2,3} 0.39(0.11) 0.05(0.04) -0.07(0.09) 0.97 227 
11 p={0.5,0.5} 0.27(0.09) -6.25(6.39) 3.28(3.28) 0.99 226 
12 p={0.5,2} 0.24(0.07) -2.53(1.78) 0.74(0.48) 0.99 184 
13 p={0,0.5} 0.26(0.08) -2.96(2.19) 6.20(4.52) 0.99 167 
14 p={0,0} 0.28(0.07) 0.13(0.16) 0.63(0.60) 0.99 162 
15 p={-2,-1} 0.29(0.10) 0.77(1.94) -1.66(4.07) 0.98 148 
16 p={0.5,3} 0.23(0.06) -1.60(0.72) 0.35(0.13) 1.00 141 
17 p={-0.5,0} 0.29(0.09) 5.38(9.30) 2.73(4.61) 0.99 139 
18 p={3} 0.33(0.10) -0.06(0.13) 0.95 137 
19 p={-0.5,-0.5} 0.27(0.08) -5.06(4.36) -2.40(2.14) 0.99 129 
20 p={-1,-1} 0.29(0.10) -1.08(0.99) -0.99(0.92) 0.98 124 
21 p={-1,-0.5} 0.28(0.08) 2.27(4.60) -4.76(9.42) 0.99 118 
22 p={-1} 0.32(0.14) 0.35(0.27) 0.97 110 
23 p={-2,-0.5} 0.30(0.07) 0.24(0.33) -1.10(1.64) 0.98 78 
24 p={1,3} 0.24(0.06) -0.95(0.34) 0.40(0.12) 1.00 63 
25 p={-0.5} 0.27(0.13) 1.06(0.74) 0.98 49 
26 p={0} 0.25(0.11) -0.61(0.37) 0.98 27 
27 p={-0.5,3} 0.23(0.07) 0.87(0.44) 0.22(0.12) 1.00 22 
28 p={-2,2} 0.30(0.07) 0.06(0.10) 0.08(0.24) 0.99 19 
29 p={0,3} 0.25(0.07) -0.50(0.31) 0.25(0.14) 1.00 19 
30 p={2} 0.34(0.03) -0.17(0.23)  0.97 18 
31 p={-1,3} 0.29(0.08) 0.22(0.14) 0.07(0.14) 1.00 17 
32 p={-2,0} 0.30(0.06) 0.07(0.17) 0.10(0.67) 0.98 13 
33 p={-2,1} 0.27(0.08) 0.15(0.12) 0.46(0.51) 0.98 13 
34 p={-2,0.5} 0.33(0.10) -3.19(10.91) 0.33(1.39) 0.96 11 
35 p={-0.5,2} 0.27(0.09) 0.76(0.46) 0.27(0.17) 0.99 11 
36 p={-1,0.5} 0.29(0.05) 0.50(0.49) 1.24(1.22) 1.00 9 
37 p={0,1} 0.37(0.04) -0.54(0.11) 0.58(0.11) 1.00 8 
38 p={0.5} 0.27(0.11) -1.08(0.67)  0.99 7 
39 p={-1,2} 0.32(0.05) 0.33(0.22) 0.22(0.11) 1.00 6 
40 p={-1,0} 0.32(0.03) 0.52(0.33) 0.65(0.43) 1.00 6 
41 p={-1,1} 0.30(0.04) 0.14(0.23) 0.25(0.24) 1.00 5 
42 p={0,2} 0.30(0.05) -0.41(0.21) 0.25(0.16) 1.00 5 
43 p={-0.5,1} 0.25(0.08) 1.48(0.77) 0.92(0.47) 1.00 5 
44 p={-0.5,0.5} 0.28(0.07) 2.21(1.83) 2.42(2.19) 1.00 3 
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Figure E.15: Distribution of WTI crude oil futures return (13.05.2008 - 31.05.2016) 

(a) Month 1 
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Logarithmic return of crude oil futures 

mean = 0.0001 std. dev. = 0.45 skew. = 0.00 kurt. = 0.00 N = 915 
Jarque-Bera test: p-value = 0.01 

(b) Month 2 
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Logarithmic return of crude oil futures 

mean = -0.0000 std. dev. = 0.43 skew. = -0.01 kurt. = -0.01 N = 1906 
Jarque-Bera test: p-value = 0.01 

(c) Month 3 
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Logarithmic return of crude oil futures 

mean = -0.0000 std. dev. = 0.42 skew. = 0.00 kurt. = 0.00 N = 1882 
Jarque-Bera test: p-value = 0.01 

 

(d) Month 4 
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Logarithmic return of crude oil futures 

mean = -0.0002 std. dev. = 0.40 skew. = 0.00 kurt. = 0.00 N = 1843 
Jarque-Bera test: p-value = 0.01 

(e) Month 5 
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Logarithmic return of crude oil futures 

mean = 0.0004 std. dev. = 0.39 skew. = 0.00 kurt. = 0.00 N = 1797 
Jarque-Bera test: p-value = 0.01 

(f) Month 6 
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Logarithmic return of crude oil futures 

mean = -0.0003 std. dev. = 0.36 skew. = -0.04 kurt. = -0.04 N = 1737 
Jarque-Bera test: p-value = 0.01 

 

(g) Month 7 
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mean = -0.0005 std. dev. = 0.34 skew. = -0.01 kurt. = -0.01 N = 1559 
Jarque-Bera test: p-value = 0.01 

(h) Month 8 
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mean = 0.0005 std. dev. = 0.32 skew. = -0.01 kurt. = -0.01 N = 1360 
Jarque-Bera test: p-value = 0.01 

(i) Month 9 
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Logarithmic return of crude oil futures 

mean = 0.0004 std. dev. = 0.32 skew. = -0.01 kurt. = -0.01 N = 1112 
Jarque-Bera test: p-value = 0.01 

 

(j) Month 10 
 
 
 
 
 
 

Jarque-Bera test: p-value = 0.01 

(k) Month 11 
 
 
 
 
 
 

Jarque-Bera test: p-value = 0.01 

(l) Month 12 
 
 
 
 
 
 

Jarque-Bera test: p-value = 0.01 

 

Figure shows the distributions of logarithmic returns between 13.05.2008 and 
31.05.2016 for contracts of different maturities. 
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Figure E.16: WTI crude oil option closing price (13.05.2008 -  31.05.2016) 

(a) Month 1 
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Figure shows temporal development of WTI crude oil options price and logarithmic 
return between 13.05.2008 and 31.05.2016 for contracts of different maturities. 
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Figure E.17: Distribution of WTI crude oil option closing return (13.05.2008 - 
31.05.2016) 

(a) Month 1 
 
 
 
 
 
 

-5 0 5 
Logarithmic return of crude oil option closing price 

mean = 0.0014 std. dev. = 1.68 skew. = -0.02 kurt. = -0.02 N = 915 
Jarque-Bera test: p-value = 0.61 

(b) Month 2 
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mean = 0.0005 std. dev. = 0.97 skew. = -0.02 kurt. = -0.02 N = 1906 
Jarque-Bera test: p-value = 0.00 

(c) Month 3 
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Logarithmic return of crude oil option closing price 

mean = -0.0001 std. dev. = 0.89 skew. = -0.01 kurt. = -0.01 N = 1882 
Jarque-Bera test: p-value = 0.00 
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Logarithmic return of crude oil option closing price 

mean = -0.0002 std. dev. = 0.89 skew. = -0.00 kurt. = -0.00 N = 1843 
Jarque-Bera test: p-value = 0.01 

(e) Month 5 
 
 
 
 
 
 

-4 -2 0 2 4 
Logarithmic return of crude oil option closing price 

mean = -0.0003 std. dev. = 0.94 skew. = 0.07 kurt. = 0.07 N = 1797 
Jarque-Bera test: p-value = 0.00 

(f) Month 6 
 
 
 
 
 
 

-5 0 5 
Logarithmic return of crude oil option closing price 

mean = -0.0007 std. dev. = 1.06 skew. = -0.03 kurt. = -0.03 N = 1737 
Jarque-Bera test: p-value = 0.00 

 

(g) Month 7 
 
 
 
 
 
 

-4 -2 0 2 4 
Logarithmic return of crude oil option closing price 

mean = -0.0004 std. dev. = 1.12 skew. = -0.06 kurt. = -0.06 N = 1559 
Jarque-Bera test: p-value = 0.00 

(h) Month 8 
 
 
 
 
 
 

-5 0 5 
Logarithmic return of crude oil option closing price 

mean = -0.0001 std. dev. = 1.23 skew. = -0.12 kurt. = -0.12 N = 1360 
Jarque-Bera test: p-value = 0.00 

(i) Month 9 
 
 
 
 
 
 

-5 0 5 
Logarithmic return of crude oil option closing price 

mean = -0.0004 std. dev. = 1.25 skew. = 0.04 kurt. = 0.04 N = 1112 
Jarque-Bera test: p-value = 0.00 

 

(j) Month 10 
 
 
 
 
 
 

-5 0 5 
Logarithmic return of crude oil option closing price 

mean = 0.0006 std. dev. = 1.15 skew. = -0.16 kurt. = -0.16 N = 892 
Jarque-Bera test: p-value = 0.00 

(k) Month 11 
 
 
 
 
 
 

-5 0 5 
Logarithmic return of crude oil option closing price 

mean = 0.0014 std. dev. = 1.17 skew. = -0.01 kurt. = -0.01 N = 766 
Jarque-Bera test: p-value = 0.00 

(l) Month 12 
 
 
 
 
 
 

-5 0 5 
Logarithmic return of crude oil option closing price 

mean = 0.0024 std. dev. = 1.18 skew. = 0.16 kurt. = 0.16 N = 634 
Jarque-Bera test: p-value = 0.00 

 

Figure shows the distributions of logarithmic options returns between 13.05.2008 and 
31.05.2016 for contracts of different maturities. 
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*Research Highlights 
 
 
 
 
 
 

Highlights 
• This paper studies deviations from constant implied volatility across various levels of moneyness 

for crude oil options. 
• We find that the implied volatility function exhibits a “smile” on 62% of the days in the sample. 
• The occurrence of smiles is positively correlated with basis and hedging pressure of the 

underlying crude oil futures contract and positively correlated with various measures of 
transaction costs. 

• We find that the underlying futures return distribution has fatter tails during the times of high 
basis or high hedging pressure. 



 

*Abstract 
 
 
 
 
 

Option Prices and Implied Volatility in the Crude 
Oil Market 

 
 

This paper studies the determinants of WTI crude oil call option prices with a special 
emphasis on the relationship between implied volatility and moneyness. Our first- 

stage regression estimates a quadratic approximation of implied volatility as a 
function of moneyness, while our second-stage regression investigates correlations 

between the estimated parameters and a list of explanatory variables. The first-
stage regressions show a positive coefficient on the quadratic term, suggesting that 
the market exhibits ‘Implied Volatility Smile’ and hence violates the Black-Scholes 

predictions. The main results of our paper concern the determinants of these 
violations. We find that the curvature of implied volatility as a function of moneyness 
is: (i) positively and significantly correlated with basis and hedging pressure of the 
underlying crude oil futures contract (ii) positively and significantly correlated with 
various measures of transaction costs on the options market. We explore various 

explanations for these results. The paper also contains a variety of robustness 
checks, mostly related to the assumed functional forms. 
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